NTFS
NTFS (New Technology File System)[1] is the standard file system of Windows NT, including Windows 2000, Windows XP, and all their successors to date.[6]
NTFS supersedes the FAT file system as the preferred file system for Microsoft’s Windows operating systems. NTFS has several improvements over FAT and HPFS (High Performance File System) such as improved support for metadata and the use of advanced data structures to improve performance, reliability, and disk space utilization, plus additional extensions such as security access control lists (ACL) and file system journaling.
NTFS v3.0 includes several new features over its predecessors: sparse file support, disk usage quotas, reparse points, distributed link tracking, and file-level encryption, also known as the Encrypting
FAT32
File Allocation Table (FAT) is the name of a computer file system architecture and a family of industry standard file systems utilizing it.
The FAT file system is technically relatively simple yet robust. It offers reasonably good performance even in light-weight implementations and is therefore widely adopted and supported by virtually all existing operating systems for personal computers. This makes it a well-suited format for data exchange between computers and devices of almost any type and age from the early 1980s up to the present.
Originally designed in the late 1970s for use on floppy disks, it was soon adapted and used almost universally on hard disks throughout the DOS and Windows 9x eras for two decades. With the introduction of more powerful computers and operating systems its use on hard drives has since started to decline, but it continues to be used on many computer systems.
Today, FAT file systems are still commonly found on floppy disks, solid-state memory cards, flash memory cards, and on many portable and embedded devices.
The name of the file system originates from the file system's prominent usage of an index table, the FAT, statically allocated at the time of formatting. The table contains entries for each cluster, a contiguous area of disk storage. Each entry contains either the number of the next cluster in the file, or else a marker indicating end of file, unused disk space, or special reserved areas of the disk. The root file directory of the disk contains the number of the first cluster; the operating system can then traverse the FAT table, looking up the cluster number of each successive part of the disk file as a cluster chain until the end of the file is reached.
As disk drives have evolved, the maximum number of clusters has significantly increased, and so the number of bits used to identify each cluster has grown. The successive major versions of the FAT format are named after the number of table element bits: 12 (FAT12), 16 (FAT16), and 32 (FAT32). Each of these variants is still in use. The FAT standard has also been expanded in other ways while generally preserving backward compatibility with existing software.
NTFS (New Technology File System)[1] is the standard file system of Windows NT, including Windows 2000, Windows XP, and all their successors to date.[6]
NTFS supersedes the FAT file system as the preferred file system for Microsoft’s Windows operating systems. NTFS has several improvements over FAT and HPFS (High Performance File System) such as improved support for metadata and the use of advanced data structures to improve performance, reliability, and disk space utilization, plus additional extensions such as security access control lists (ACL) and file system journaling.
NTFS v3.0 includes several new features over its predecessors: sparse file support, disk usage quotas, reparse points, distributed link tracking, and file-level encryption, also known as the Encrypting
FAT32
File Allocation Table (FAT) is the name of a computer file system architecture and a family of industry standard file systems utilizing it.
The FAT file system is technically relatively simple yet robust. It offers reasonably good performance even in light-weight implementations and is therefore widely adopted and supported by virtually all existing operating systems for personal computers. This makes it a well-suited format for data exchange between computers and devices of almost any type and age from the early 1980s up to the present.
Originally designed in the late 1970s for use on floppy disks, it was soon adapted and used almost universally on hard disks throughout the DOS and Windows 9x eras for two decades. With the introduction of more powerful computers and operating systems its use on hard drives has since started to decline, but it continues to be used on many computer systems.
Today, FAT file systems are still commonly found on floppy disks, solid-state memory cards, flash memory cards, and on many portable and embedded devices.
The name of the file system originates from the file system's prominent usage of an index table, the FAT, statically allocated at the time of formatting. The table contains entries for each cluster, a contiguous area of disk storage. Each entry contains either the number of the next cluster in the file, or else a marker indicating end of file, unused disk space, or special reserved areas of the disk. The root file directory of the disk contains the number of the first cluster; the operating system can then traverse the FAT table, looking up the cluster number of each successive part of the disk file as a cluster chain until the end of the file is reached.
As disk drives have evolved, the maximum number of clusters has significantly increased, and so the number of bits used to identify each cluster has grown. The successive major versions of the FAT format are named after the number of table element bits: 12 (FAT12), 16 (FAT16), and 32 (FAT32). Each of these variants is still in use. The FAT standard has also been expanded in other ways while generally preserving backward compatibility with existing software.
No comments:
Post a Comment